On unitary equivalence of quasi-free Hilbert modules
نویسندگان
چکیده
منابع مشابه
On quasi-free Hilbert modules
In this note we settle some technical questions concerning finite rank quasi-free Hilbert modules and develop some useful machinery. In particular, we provide a method for determining when two such modules are unitarily equivalent. Along the way we obtain representations for module maps and study how to determine the underlying holomorphic structure on such modules.
متن کاملQuasi-free Resolutions of Hilbert Modules
The notion of a quasi-free Hilbert module over a function algebra A consisting of holomorphic functions on a bounded domain Ω in complex m space is introduced. It is shown that quasi-free Hilbert modules correspond to the completion of the direct sum of a certain number of copies of the algebra A. A Hilbert module is said to be weakly regular (respectively, regular) if there exists a module map...
متن کاملEquivalence of quotient Hilbert modules
Let M be a Hilbert module of holomorphic functions over a natural function algebra A (Ω), where Ω ⊆Cm is a bounded domain. Let M0 ⊆M be the submodule of functions vanishing to order k on a hypersurface Z ⊆ Ω. We describe a method, which in principle may be used, to construct a set of complete unitary invariants for quotient modules Q = M ⊖M0. The invariants are given explicitly in the particula...
متن کاملMulti-Frame Vectors for Unitary Systems in Hilbert $C^{*}$-modules
In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective ...
متن کاملA Generalization of Wigner’s Unitary-antiunitary Theorem to Hilbert Modules
Let H be a Hilbert C-module over a matrix algebra A. It is proved that any function T : H → H which preserves the absolute value of the (generalized) inner product is of the form Tf = φ(f)Uf (f ∈ H), where φ is a phase-function and U is an A-linear isometry. The result gives a natural extension of Wigner’s classical unitary-antiunitary theorem for Hilbert modules. 1991 Physics and Astronomy Cla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2009
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm195-1-5